
DYSTIL: Dynamic Strategy Induction with Large
Language Models for Reinforcement Learning

Borui Wang
Department of Computer Science

Yale Univesity
borui.wang@yale.edu

Kathleen McKeown
Department of Computer Science

Columbia University
kathy@cs.columbia.edu

Rex Ying
Department of Computer Science

Yale Univesity
rex.ying@yale.edu

Abstract

Reinforcement learning from expert demonstrations has long remained a chal-
lenging research problem, and existing state-of-the-art methods using behavioral
cloning plus further RL training often suffer from poor generalization, low sam-
ple efficiency, and poor model interpretability. Inspired by the strong reasoning
abilities of large language models (LLMs), we propose a novel strategy-based rein-
forcement learning framework integrated with LLMs called DYNAMIC STRATEGY
INDUCTION WITH LLMS FOR REINFORCEMENT LEARNING (DYSTIL) to over-
come these limitations. DYSTIL dynamically queries a strategy-generating LLM to
induce textual strategies based on advantage estimations and expert demonstrations,
and gradually internalizes induced strategies into the RL agent through policy
optimization to improve its performance through boosting policy generalization
and enhancing sample efficiency. It also provides a direct textual channel to observe
and interpret the evolution of the policy’s underlying strategies during training. We
test DYSTIL over challenging RL environments from Minigrid and BabyAI, and
empirically demonstrate that DYSTIL significantly outperforms state-of-the-art
baseline methods by 17.75% in average success rate while also enjoying higher
sample efficiency during the learning process.

1 Introduction

Many important, yet challenging, reinforcement learning tasks are highly hierarchical and structural,
have sparse and delayed rewards, and require complex reasoning procedures based on understand-
ing of higher-level conceptual abstractions [1, 2, 3]. In practice, classical reinforcement learning
algorithms often fail to learn these difficult RL tasks well from scratch, because of the difficulty in
collecting meaningful reward signals during exploration and the lack of support for explicit higher-
level conceptual abstraction and reasoning. Therefore, it is often necessary to collect a set of expert
demonstration trajectories to aid reinforcement learning over these tasks [4]. Many existing methods
for reinforcement learning from expert demonstrations typically first employ behavioral cloning [5]
to train the RL agent’s policy generator to imitate the behavior and action decisions of the expert
through supervised learning. They then feed the agent into a more advanced RL algorithm (such as
Proximal Policy Optimization [6]) to further improve its performance.

This approach of behavioral cloning plus further RL training suffers from several severe limitations:
(1) expert demonstrations are often expensive or hard to collect, so typically the amount of expert

Preprint.

ar
X

iv
:2

50
5.

03
20

9v
1

 [
cs

.L
G

]
 6

 M
ay

 2
02

5

1. Advance when clear and safe:
 - The agent should move forward when there
is no immediate obstacle (e.g., no ball directly in
front or very close on either side) and when the
green goal is within a reasonable distance (1-3
steps away). This minimizes time steps without
unnecessary rotations.

…

List of Strategies

[Description of the RL Environment]
Imagine now you are a reinforcement learning agent in a 2D gridworld RL
platform called MiniGrid, and you are learning to complete tasks in a specific
RL environment called 'Dynamic Obstacles' on this Minigrid platform. This
'Dynamic Obstacles' environment is …

[Expert Demonstration Trajectories]
You are now provided with 5 successful trajectories of expert demonstrations
of the oracle courses of actions to complete tasks in this 'Dynamic Obstacles'
environment, which are listed in detail below:

…

[Strategy Query Prompt]
As a learning agent, what generalizable strategies can you induce about the
best policy to complete this type of 'Dynamic Obstacles' tasks in this MiniGrid
RL environment from the above 5 expert demonstrations of oracle trajectories
of observations and actions? Please list your induced generalizable strategies
in a detailed list, and please also be very specific on your induced strategies by
using the format of 'the agent should do X when it is facing scenario Y'. You
don't need to provide examples or conditions.

Prompt for Strategy Induction

10. Move forward when the goal is directly
ahead, even if other obstacles are nearby:
 - If the green goal is directly ahead and no
obstacles block the forward path, the agent
should prioritize moving forward towards the
goal, regardless of surrounding obstacles, as the
task can be completed in fewer steps.

GPT-4o

Strategy-Generating LLM

Figure 1: An example strategy induction process from expert demonstrations in GPT-4o [7] for the
Dynamic Obstacles RL environment from Minigrid [1]. See Appendix H for the complete list of
strategies induced in this example.

demonstration trajectories is quite limited; (2) these limited expert demonstrations usually can
only cover a small region of the state space, and thus behavioral cloning over them often tends to
cause overfitting and results in poor generalization of the learned policy; (3) this approach does
not encourage the RL agent to explicitly acquire higher-level conceptual abstractions and strategic
understanding of the RL tasks, thus limiting the efficiency with which it utilizes training samples as
well as the level of performance it can achieve; (4) this approach treats the policy network of the RL
agent as a black box and thus suffers from low model transparency and interpretability.

Proposed Approach To overcome the aforementioned limitations, in this paper we present
DYSTIL, a novel strategy-based reinforcement learning framework integrated with LLMs called
DYNAMIC STRATEGY INDUCTION WITH LLMS FOR REINFORCEMENT LEARNING FROM EXPERT
DEMONSTRATIONS (DYSTIL). Our method is inspired by the phenomenon in real-world human
learning: when a teacher tries to teach a skill to a student, the most effective and efficient teaching
method often involves more than merely asking the student to memorize all the details of specific
actions. It is usually also complemented by clear explanation of the general strategies, principles,
and ways of thinking for correctly approaching new scenarios when applying this skill. Inspired by
this key observation and the strong abilities of knowledge induction [8, 9] and reasoning [10, 11]
exhibited by state-of-the-art large language models (LLMs), we propose to leverage LLMs to help
RL algorithms to induce generalizable strategies and learn higher-level conceptual abstractions
about RL tasks from expert demonstrations. DYSTIL dynamically queries a strategy-generating
LLM to induce textual strategies based on advantage estimations and expert demonstrations, and
gradually internalizes induced strategies into the RL agent through policy optimization to improve its
performance.

To empirically assess the effectiveness of DYSTIL, we run comprehensive experiments and ablation
studies over four challenging RL environments from Minigrid [1] and BabyAI [2]. Our experiment
results show that DYSTIL achieves significantly superior learning performance and has higher sample
efficiency over existing baseline methods across different RL environments. On average DYSTIL
outperforms the strongest baseline method by 17.75% success rate across the four RL environments.

To summarize, DYSTIL has the following key advantages and contributions: (1) it adopts a novel
strategy-based architecture for the RL agent to enable good synergy between higher-level strategy
acquisition and parametrized policy optimization; (2) it achieves effective knowledge distillation in
the form of strategy induction from large-scale LLMs onto lightweight LLMs to largely improve
the generalizability of the agent’s policy; (3) it achieves significantly better learning performance
and sample efficiency over baseline methods during evaluation; (4) it largely enhances the model
transparency and interpretability of the RL agent by providing a direct textual channel to observe
and interpret the evolution of the policy’s underlying strategies during RL training. Our work opens

2

up new possibilities in leveraging LLMs to generate textual strategies to enhance the performance,
efficiency and interpretability of reinforcement learning algorithms.

2 DYSTIL: Dynamic Strategy Induction with LLMs for Reinforcement
Learning

2.1 Preliminaries

Problem Formulation This paper targets at the following reinforcement learning from expert
demonstration problem, which can be formulated under the framework of partially-observable Markov
decision processes (POMDPs) [12]: We have an agent L in a reinforcement learning environment
E, which is a POMDP with observation space O and action space A. Additionally, the agent
L is provided with a set D of N expert demonstration trajectories, where D = {d1, d2, ..., dN}.
Each expert demonstration trajectory di in D is a list of observation-action pairs in sequential order
demonstrated by the expert in the environment E, where di = [(odi

1 , adi
1), (odi

2 , adi
2), ..., (odi

Tdi
, adi

Tdi
)].

The goal of the agent L is to learn an optimal policy πL that maximizes its expected total discounted
reward E[

∑∞
t=0 γ

trt | πL], where γ is the discount factor and rt is the reward that the agent receives
at time step t.

State Approximation Under the POMDP setting, the agent cannot observe the true state of the
environment E and can only receive a partial observation of E at each time step. Therefore, we
follow previous approaches to use a length-H window of historical observation-action pairs plus the
current observation as a ‘pseudo-state’ to approximate the underlying true state of the environment E
at each time step [13]. In general, at time step t, the ‘pseudo-state’ of the environment will be defined
as st = {ot−H , at−H , ..., ot−1, at−1, ot} for t > H and st = {o1, a1, ..., ot−1, at−1, ot} for t ≤ H .

Language Grounding In DYSTIL we take a language-grounded approach to reinforcement learn-
ing. Previous work [14] has demonstrated that running reinforcement learning using an LLM policy
generator over textual descriptions of agent observations instead of the original raw observations
can largely boost learning performance and sample efficiency. A crucial prerequisite for language-
grounded RL is having access to a good observation-to-text converter that can convert the agent’s raw
observation information (such as images or state tensors) about the environment into rich and accurate
textual descriptions in natural language. In general, such an observation-to-text converter can be
either rule-based (such as BabyAI-text proposed in [14]) or trained with neural network architectures.
Without loss of generality, in this work we assume that our RL agent has access to an accurate and
well-functioning observation-to-text converter Co→t, which is a safe assumption given the recent
rapid advances in pre-trained multimodal foundation models [15]. Please see Figure 7 in Appendix D
for a concrete example of observation-to-text transformation using BabyAI-text.

2.2 Strategy Induction with LLMs from Expert Demonstrations

Recent research works have demonstrated the ability of LLMs to automatically extract generalizable
rules, knowledge and insight from examples [8, 16]. Inspired by these works, here we focus on
using LLMs to automatically induce useful and generalizable strategies for completing tasks in
reinforcement learning environments from trajectories of expert demonstrations.

We adapt and extend the prompting method in [16] to design our prompt for automatic RL strategy
induction. Our prompt has three components: Description of the RL Environment, Expert Demonstra-
tion Trajectories and Strategy Query Prompt. The Expert Demonstration Trajectories component
includes a full textual description for each of the expert demonstration trajectories in D including its
goal and a concatenation of the textual descriptions of all {observation, action} pairs in sequential
order. The Strategy Query Prompt component describes our expectations for the kind of strategies
that the LLM should induce from expert demonstrations and generate for us. Figure 1 demonstrates a
concrete example of this prompt and our strategy induction process from expert demonstrations in
GPT-4o [7] for an RL environment called Dynamic Obstacles from the Minigrid library [1]. As we
can see in Figure 1, the list of strategies induced by GPT-4o is indeed very relevant to successfully
completing tasks in this Dynamic Obstacles RL environment, and also coincides with human intuition.

In the DYSTIL framework, we refer to the LLM used for inducing strategies as the strategy-generating
LLM, which is typically a large-scale LLM (e.g. GPT-4o [7]) that has strong reasoning abilities.

3

2.3 A New Strategy-Based Model Architecture for DYSTIL RL Agents

In coordination with the DYSTIL learning framework, we design a novel strategy-based model
architecture for our DYSTIL RL agent. Our new model architecture for DYSTIL RL agents is
upgraded from the agent model architecture introduced in [14] and augmented with strategies. More
specifically, our new model architecture has the following four components as illustrated in Figure 2:

Goal Pseudo-State DescriptionStrategy 1 Strategy N…

Core Reasoning LLM

Environment Description Action Prompting Prefix

Hidden-State
Embedding Vector

LM Head Value NetworkSoftmax

Actor Module Critic Module

Logit Vector
for Actions

DYSTIL

<latexit sha1_base64="G4NrL4+FchmdNAyoq1HYtt9oFXI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOejjQQ=</latexit>w
<latexit sha1_base64="rP6KBalUJ4BY6GUTwYV4bQOLKFQ=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0WpICWRoi6Lbly4qGgf0IQwmUzaoZMHMxOhhPyBG3/FjQtF3Lp15984aYNo64ELh3Pu5d573JhRIQ3jSystLC4tr5RXK2vrG5tb+vZOR0QJx6SNIxbxnosEYTQkbUklI72YExS4jHTd0WXud+8JFzQK7+Q4JnaABiH1KUZSSY5+aMXUsQIkhxix9DqrCWgF1IODY/ij3mZHjl416sYEcJ6YBamCAi1H/7S8CCcBCSVmSIi+acTSThGXFDOSVaxEkBjhERqQvqIhCoiw08k/GTxQigf9iKsKJZyovydSFAgxDlzVmd8oZr1c/M/rJ9I/t1MaxokkIZ4u8hMGZQTzcKBHOcGSjRVBmFN1K8RDxBGWKsKKCsGcfXmedE7q5mm9cdOoNi+KOMpgD+yDGjDBGWiCK9ACbYDBA3gCL+BVe9SetTftfdpa0oqZXfAH2sc3EOycDA==</latexit>

⇡L(s | g, S)

<latexit sha1_base64="qsZDFOTpOtw0KJiQbYlFquZlkXk=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoICWRoi6Lbly4qGgf0IQwmUzaoZMHMxOhhPyAG3/FjQtF3Lp35984aYNo64ELh3Pu5d573JhRIQ3jSystLC4tr5RXK2vrG5tb+vZOR0QJx6SNIxbxnosEYTQkbUklI72YExS4jHTd0WXud+8JFzQK7+Q4JnaABiH1KUZSSY5+0HGsAMkhRiy9zmoCWgH14OAY/qi32ZGjV426MQGcJ2ZBqqBAy9E/LS/CSUBCiRkSom8asbRTxCXFjGQVKxEkRniEBqSvaIgCIux08k0GD5XiQT/iqkIJJ+rviRQFQowDV3XmN4pZLxf/8/qJ9M/tlIZxIkmIp4v8hEEZwTwa6FFOsGRjRRDmVN0K8RBxhKUKsKJCMGdfniedk7p5Wm/cNKrNiyKOMtgD+6AGTHAGmuAKtEAbYPAAnsALeNUetWftTXuftpa0YmYX/IH28Q1UmZsZ</latexit>

VL(s | g, S)

Figure 2: The strategy-based model architecture of our DYSTIL RL
agents.

Input Constructor For
each time step of decision
making in an RL environ-
ment, the input to our DYS-
TIL RL agent model is con-
structed by concatenating
the following text compo-
nents: (1) a concise and es-
sential description of the en-
vironment, such as the set
of actions that an agent can
take in the environment; (2)
the list of induced strate-
gies currently stored in the
RL agent’s memory; (3) the
goal of the RL agent; (4) a
detailed textual description of the pseudo-state of the environment at the current time step, which
includes the agent’s observation at the current time step and a history of H (observation, action) pairs
from the previous H time steps in the agent’s current trajectory; (5) an action prompting prefix (i.e.
‘Action (H+1):’). See Figure 6 in Appendix A for an example textual input into our new agent model
following this template for H = 2.

Core Reasoning LLM The core information processing and reasoning module of our model
is a lightweight1 open-source LLM for autoregressive language modeling that is open to efficient
parameter tuning, such as Meta Llama 3.1 8B [17]. We call this module the core reasoning LLM (in
order to distinguish from the strategy-generating LLM introduced in Section 2.2). We directly feed
the aforementioned dynamically-constructed textual input into this core reasoning LLM, and on its
output side we take the last-layer hidden-state vector of the last token, which we denote as w.

Actor Module For the actor module of our agent model, we feed that hidden-state vector w into
the innate pre-trained language modeling head of the core reasoning LLM. From its output, we fetch
the logit values for the first tokens of all action names and group them together into a shorter logit
vector, and then apply the softmax function on it to obtain a probability distribution over all possible
actions as our RL agent L’s policy πL(s | g,S).2

Critic Module For the critic module of our agent model, we directly feed that hidden-state vector w
into a value network that project w into a real number as the value of the value function VL(s | g,S).

2.4 Dynamic Strategy Induction with LLMs based on Proximal Policy Optimization

The induction method introduced in Section 2.2 is often able to generate a useful list of strategies that
can help RL agents make better decisions in RL tasks, but it also has one prominent limitation: it is
a one-time query and the induced list of strategies will remain static over time. As a result, if the
initial one-time induced list of strategies from the strategy-generating LLM is not accurate or not
comprehensive enough, there will be no opportunity for self-correction afterwards. Therefore, we
propose to upgrade this static approach into an iterative and dynamic algorithm that can allow the RL
agent to continuously improve its induced list of strategies and its policy model based on interactions
with the environment.

1In theory this core reasoning LLM can be any open-source LLM for autoregressive language modeling. We
add the lightweight requirement here mainly from the realistic consideration of training and inference efficiency,
because in many real-world reinforcement learning applications there are requirements on the decision-making
speed and training time of the RL model.

2Due to space limit, please see Appendix B for a more detailed explanation of our design of the actor module.

4

Strategy-Generating

Initial List of
Strategies

query

induce

Behavioral Cloning
with Induced Strategies

execute policy

RL Environment

collect Experience
Buffer

compute

Advantage Estimations

rank and filter
Strategy-Generating

Updated
List of

Strategies

query

induce

Newly Initialized
<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>LDYSTIL RL Agent

DYSTIL
RL Agent

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>L

<latexit sha1_base64="lOsnbkyHV+F6zfxrddBEsmeLJQc=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiGxcuKtgHtEPJpJk2NJMZk0yhDP0ONy4UcevHuPNvzLSz0NYDgcM593JPjh8Lro3jfKPC2vrG5lZxu7Szu7d/UD48aukoUZQ1aSQi1fGJZoJL1jTcCNaJFSOhL1jbH99mfnvClOaRfDTTmHkhGUoecEqMlbxeSMyIEpHez/puv1xxqs4ceJW4OalAjka//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lIvexl4n9eNzHBtZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0rqoupfV2kOtUr/J6yjCCZzCObhwBXW4gwY0gcITPMMrvKEJekHv6GMxWkD5zjH8Afr8AbGHkg8=</latexit>L1

<latexit sha1_base64="M7DPnq7dLCkgEFHkyxFMmirnYHU=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9klRD0SvXjwgIkgCWxIt3Shoe2ubZeEbPgdXjxojFd/jDf/jV3Yg4KTNJnMvJc3nSDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK2jRBHaIhGPVCfAmnImacsww2knVhSLgNPHYHyT+Y8TqjSL5IOZxtQXeChZyAg2VvJ7ApsRwTy9m/Vr/XLFrbpzoFXi5aQCOZr98ldvEJFEUGkIx1p3PTc2foqVYYTTWamXaBpjMsZD2rVUYkG1n85Dz9CZVQYojJR90qC5+nsjxULrqQjsZBZSL3uZ+J/XTUx45adMxomhkiwOhQlHJkJZA2jAFCWGTy3BRDGbFZERVpgY21PJluAtf3mVtGtV76Jav69XGtd5HUU4gVM4Bw8uoQG30IQWEHiCZ3iFN2fivDjvzsditODkO8fwB87nD7MLkhA=</latexit>L2

RL Environment

test

test

evaluate

evaluate

<latexit sha1_base64="pc4eL7SZ4ZQrMVazxWzzLrSpsuo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF4/xkQckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2L1iOOE+xEdKBEKRtFKD/c9r1euuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2L6vndeaV2ncdRhCM4hlPw4BJqcAt1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx/Uq42D</latexit>

R1

<latexit sha1_base64="1yPd1NT7Ge7xumWUfKo6km3V0jA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx7xwSOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm5nfekKleSwfzThBP6IDyUPOqLHSw32v0iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrzyJ1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3Ua7eVUu16yyOPJzAKZyDB5dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4A1i+NhA==</latexit>

R2

compare and select

du
pl

ic
at

e

du
pl

ic
at

e

replace

update memory

save into
memory

PPO Parameter
Optimization

Expert
Demonstration

Trajectories
…

<latexit sha1_base64="Zc8XDo3xoN33rPVYOKIXVsC9yhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWw2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZgOlIgEo2ilh7Dv9csVt+rOQVaJl5MK5Gj0y1+9MGFZzBUySY3pem6K/oRqFEzyaamXGZ5SNqID3rVU0ZgbfzI/dUrOrBKSKNG2FJK5+ntiQmNjxnFgO2OKQ7PszcT/vG6G0bU/ESrNkCu2WBRlkmBCZn+TUGjOUI4toUwLeythQ6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AHwF42V</latexit>

d1
<latexit sha1_base64="QMv2/gWzBNfvB+bY3jnzWqEPEzk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lspu3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkg84o8ZK92G/1i9X3Ko7B1klXk4qkKPZL3/1wpilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzq4RkECtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qBld+xmWSGpRssWiQCmJiMvubhFwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1fpdvdK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/xm42W</latexit>

d2

<latexit sha1_base64="JF3eSfKJu+H8fKWG4DFqDtB11bk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWzmbRLN5uwuxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpk4yxbDBEpGodkA1Ci6xYbgR2E4V0jgQ2AqGN1O/9YRK80Q+mlGKfkz7kkecUWOlh7B31ytX3Ko7A1kmXk4qkKPeK391w4RlMUrDBNW647mp8cdUGc4ETkrdTGNK2ZD2sWOppDFqfzw7dUJOrBKSKFG2pCEz9ffEmMZaj+LAdsbUDPSiNxX/8zqZia78MZdpZlCy+aIoE8QkZPo3CblCZsTIEsoUt7cSNqCKMmPTKdkQvMWXl0nzrOpdVM/vzyu16zyOIhzBMZyCB5dQg1uoQwMY9OEZXuHNEc6L8+58zFsLTj5zCH/gfP4AHBqNsg==</latexit>

dN

(
(

(

)
)

)

,
,

,

…

pairs

estimates

with lowest
advantage

DYSTIL

DYSTIL

DYSTIL

DYSTIL

LLM

LLM
<latexit sha1_base64="ZxdeYZcJjJGiqBWg1m7mAUvzQ44=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEIFUpJpKjHohfBSwX7AW0Im+22XbrZhN2JUEN/iRcPinj1p3jz37htc9DWBwOP92aYmRfEgmtwnG8rt7a+sbmV3y7s7O7tF+2Dw5aOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYHwz89uPTGkeyQeYxMwLyVDyAacEjOTbxTvcq+Cy9qGCiQ9nvl1yqs4ceJW4GSmhDA3f/ur1I5qETAIVROuu68TgpUQBp4JNC71Es5jQMRmyrqGShEx76fzwKT41Sh8PImVKAp6rvydSEmo9CQPTGRIY6WVvJv7ndRMYXHkpl3ECTNLFokEiMER4lgLuc8UoiIkhhCpubsV0RBShYLIqmBDc5ZdXSeu86l5Ua/e1Uv06iyOPjtEJKiMXXaI6ukUN1EQUJegZvaI368l6sd6tj0VrzspmjtAfWJ8/G4mRdA==</latexit>

K (st, at)

Figure 3: An overview of our proposed new modeling pipeline - Dynamic Strategy Induction with
LLMs for Reinforcement Learning (DYSTIL). The steps depicted in green arrows corresponds to
Initialization of the RL Agent Model, Initial Strategy Induction from Expert Demonstrations and
Behavioral Cloning with Induced Strategies; the steps depicted in blue arrows corresponds to Experi-
ence Collection and Advantage Estimation and Induction of New Candidate List of Strategies; and the
steps depicted in magenta arrows corresponds to Strategy-Integrated Proximal Policy Optimization.

For this purpose, in DYSTIL we propose to dynamically combine LLM strategy induction with
on-policy reinforcement learning. Below we describe our detailed procedures in sequential order:

Initialization of the RL Agent Model To begin with, we first construct and initialize a new
DYSTIL RL agent model (as introduced in Section 2.3) as our RL agent L. In particular, we create a
new empty memoryML in L to save its most recently updated list of strategies in real time. The
parameters of the core reasoning LLM and the language modeling head of L are initialized from
the pre-trained checkpoint of the corresponding LLM, and the parameters of the value network are
randomly initialized from scratch.

Initial Strategy Induction from Expert Demonstrations Now in this step, we use the method
described in Section 2.2 to query a strategy-generating LLM Q (e.g. GPT-4o [7]) to induce an initial
list of strategies S0 from all the expert demonstration trajectories in D, and store S0 in the agent L’s
memoryML. We denote the prompt template used in this step as Pinitial.

Behavioral Cloning with Induced Strategies Next, we run behavioral cloning [5] through
supervised learning to train our RL agent model L to imitate the action policy in the set of expert
demonstration trajectories D. More specifically, we run optimization procedures (such as Adam [18])
to gradually minimize the mean cross-entropy loss between the action distributions πL(s | g,S0)
generated by L and the action choices made by the expert across all the observations contained in D,
subject to a small entropy regularization [19, 20, 21]. Note that during behavioral cloning training
we only update the parameters of the core reasoning LLM and its corresponding language modeling
head, and keep the value network frozen. Intuitively, this behavioral cloning training process is very
important in that it helps the agent model L to gradually internalize the list of induced text strategies
through parameter tuning. This helps the agent model better understand how to reason with the
strategies to make good action decisions under concrete scenarios in the RL environment.

Experience Collection and Advantage Estimation After the RL agent model L has been properly
trained through behavioral cloning with its initial list of strategies S0 over expert demonstrations D,
we follow the practice of the proximal policy optimization (PPO) algorithm [6] to run L to execute its
current policy πL(s | g,S) in the environment E for T time steps to collect an experience buffer B
containing T (observation, action, reward) triples. Then, we follow the standard PPO procedures in
[6] to compute the estimated values Â of the advantage function A for all the T (observation, action)
pairs in the current experience buffer B.

Induction of New Candidate List of Strategies One important limitation of existing methods
for rule induction with LLMs for sequential decision making tasks is the lack of a credit assignment
mechanism that can clearly inform the LLMs which specific action decisions are mainly responsible
for the eventual success or failure of different trajectories [16], thus significantly limiting their

5

reasoning ability to analyze how to best adjust its induced rules to correct unfavorable action
decisions. In reinforcement learning, estimation of the advantage function [22, 23] is a commonly
used technique for solving the credit assignment problem. So in DYSTIL, we use the advantage
estimates calculated in the previous step to filter out the most suspiciously problematic (pseudo-state,
action) pairs that could contribute the most to low episode returns, and to help the strategy-generating
LLM to efficiently discern which strategy items need revision and update.

More specifically, in this step, we first rank all the T (pseudo-state, action) pairs {(st, at)}Tt=1 in the
current experience buffer B according to their current advantage estimates Â(st, at), and then filter
out K pairs with the lowest advantage estimates. We denote the set of these K (s, a) pairs asHK .
Next, we use another prompt template Pdynamic to include textual descriptions of both D andHK and
the agent L′s current list of strategies S to query the strategy-generating LLM Q again to induce and
generate a revised and updated list of strategies S ′. The prompt template Pdynamic that we use for this
step is shown in Appendix G. Here in Pdynamic we adapt and extend the operation options in [16] to
allow the LLM Q to correct, add and delete existing strategy items in the list of strategies.

Algorithm 1: Dynamic Strategy Induction with
LLMs for Reinforcement Learning (DYSTIL)
Input: E,D,Q,Pinitial,Pdynamic
Initialize: L,ML
Hyperparameters: T,K,Nepoch

Use Pinitial(D) to query Q→ S0,ML ← S0
Run Behavioral Cloning on L over D
for i = 1, 2, ..., Nepoch do

Run L in E for T time steps to collect→
B = {(ot, at, rt)}Tt=1

Compute advantage estimates Â(st, at) for
t = 1 to T using L and B

Sort {(st, at)}Tt=1 according to Â(st, at)
Select the K (st, at) pairs from {(st, at)}Tt=1

with lowest Â(st, at) values to form a setHK

Use Pdynamic(HK ,ML,D) to query Q→ S ′
L1 ← L, L2 ← L,ML2 ← S ′
Run PPO-Optimization over L1 w.r.t B
Run PPO-Optimization over L2 w.r.t B
Test L1 in E → R1; Test L2 in E → R2

if R2 > R1 then
L ← L2

else
L ← L1

Return: L

Strategy-Integrated Proximal Policy
Optimization Since in reinforcement
learning the value and advantage estima-
tions computed by the value network are
not always entirely accurate, and the out-
puts generated by the strategy-generating
LLM also have inherent randomness and
noise, we should not always uncondition-
ally trust that the newly induced list of
strategies S ′ obtained from the previous
step is indeed better than the current list
of strategies S. Therefore, here we adopt
a propose-and-test approach - we treat S ′
only as a proposed candidate for a bet-
ter strategy list, and run policy optimiza-
tions followed by empirical tests to decide
whether we should replace S by S ′ de-
pending on their real performance. Our
detailed procedures are: (1) we make two
copies of the current version of our RL
agent model L, which we denote by L1

and L2; (2) we store S in L1’s memory
ML1

, and replace L2’s memory ML2

with S ′; (3) we follow the practice of the
proximal policy optimization (PPO) algo-
rithm [6] to update model parameters of
both L1 and L2 towards optimizing the
same standard PPO clipped surrogate ob-
jective function [6] computed from the
current experience buffer B; (4) run empirical tests of both L1 and L2 in the RL environment E to
compute their respective mean average returns R1 and R2; (5) if R1 >= R2, then we update our
agent model L to be L1 (and thus keep the same strategy list S); if R2 > R1, then we update our
agent model L to be L2 (and thus also update the agent’s strategy list to be the new list S ′). Now we
go back to the previous Experience Collection and Advantage Estimation step again.

As we can see, in DYSTIL these last three steps Experience Collection and Advantage Estimation,
Induction of New Candidate List of Strategies and Strategy-Integrated Proximal Policy Optimization
will be executed in cycles to iteratively train the RL agent model to improve its performance. Our
DYSTIL learning framework is illustrated in Figure 3 and also summarized in Algorithm 1. Also see
Appendix C for the complexity analysis of DYSTIL.

6

3 Experiments

We evaluate the performance of DYSTIL in four challenging RL environments: the Dynamic
Obstacles environment from the Minigrid library [1], and the Unlock Pickup, Key Corridor and Put
Next environments from the BabyAI library [2]. Both Minigrid [1] and BabyAI [2] are popularly used
libraries of grid-world reinforcement learning environments that are designed to have good support
for language grounding. All the RL environments in Minigrid and BabyAI are partially observable in
that an agent can only see a field of view of 7× 7 grid cells in front of it (subject to object occlusion)
at every time step [1, 2]. These four RL environments we use all have sparse and delayed rewards,
and require complex reasoning over higher-level conceptual abstractions. Due to space limit, please
see Appendix E for detailed descriptions for these four RL environments respectively.

3.1 Observation-to-Text Transformation

As discussed in Section 2.1, a prerequisite for performing language-grounded reinforcement learning
is to have a good observation-to-text converter. In our experiments, we employ the text description
generator of BabyAI-text proposed in [14] to transform an agent’s raw observation in the Minigrid and
BabyAI environments into a list of sentence descriptions. See Figure 7 in Appendix D for examples.

3.2 Baseline Methods

In our experiments we compare DYSTIL with three state-of-the-art baseline methods for language-
grounded sequential decision making: ReAct [24], Reflexion [25], and GLAM [14]. GLAM can
essentially be viewed as the ablated version of DYSTIL without strategies. Here we follow the
convention of GLAM [14] to set H = 2 for all the models. For fair comparison, for GLAM we also
employ the same input design and the actor module design as in DYSTIL introduced in this paper.

3.3 Experiment Setup

Model Configurations In our experiments, for DYSTIL we use Llama 3.1 8B Instruct [17] as
the core reasoning LLM, and use GPT-4o [7] as the strategy-generating LLM. For fair comparison,
we also use Llama 3.1 8B Instruct as the decision-making LLM module for GLAM, ReAct and
Reflexion, and use GPT-4o to generate thought annotations for ReAct and to generate self-reflections
for Reflexion. We collect a set of 5 expert demonstration trajectories for each of the four RL
environments.

Training Pipelines For DYSTIL and GLAM, our training process consists of two stages: Behav-
ioral Cloning (BC) and Proximal Policy Optimization (PPO). During the Behavioral Cloning stage,
we use supervised learning to train the RL agent to imitate the action policy demonstrated in the
set of expert trajectories for 10 epochs. We then feed the corresponding output model checkpoint
from the Behavioral Cloning stage into the PPO training stage and run the standard PPO algorithm
for GLAM and run the DYSTIL version of PPO (as described in Section 2.4) for DYSTIL, both for
10000 training frames. Our training hyperparameters are detailed in Table 2 of Appendix F.

3.4 Experiment Results and Analysis

Main Results Our main experiment results are summarized in Table 1. As we can see from the
results, DYSTILBC+PPO receives the highest mean return and achieves the highest success rate for all
four environments. On average DYSTILBC+PPO outperforms the strongest baseline method ReAct
by a significant margin of 0.145 (279% in ratio) in mean return and 17.75% in success rate in these
four challenging RL environments. And notably, for the behavioral-cloning-only scores, on average
DYSTILBC also outperforms GLAMBC by a large margin of 0.192 in mean return and 12.25% in
success rate. These results demonstrate that the integration of dynamically induced textual strategies
through DYSTIL can have a significant boost in the performance of both behavioral cloning and
reinforcement learning paradigms.

Sample Efficiency In Figure 4 we compare the sample efficiency between DYSTIL and the
non-strategy baseline method GLAM. As we can see, for all four RL environments DYSTIL quickly
achieves significantly higher mean return scores than GLAM when consuming the same amount of

7

Methods Stra
Dynamic Obs Unlock Pickup Key Corridor Put Next Average

MR SR % MR SR % MR SR % MR SR % MR SR %

ReAct ✗ −0.014 51 0 0 0.078 17 0.143 24 0.052 23
Reflexion ✗ 0.005 52 0.008 2 0.048 11 0.087 15 0.037 20
GLAMBC ✗ −0.747 13 0.017 4 0.210 40 0.109 18 −0.103 18.75
GLAMBC+PPO ✗ −0.688 16 0.024 6 0.204 37 0.106 17 −0.088 19

DYSTILBC ✓ −0.096 47 0.032 9 0.259 46 0.162 22 0.089 31
DYSTILBC+PPO ✓ 0.248 65 0.041 10 0.280 56 0.217 32 0.197 40.75

Table 1: Our experiment results of DYSTIL and the four baseline methods ReAct [24], Reflexion
[25], and GLAM [14] on the Dynamic Obstacles environment from Minigrid [1], and the Unlock
Pickup environment, the Key Corridor environment, and the Put Next Environment from BabyAI [2].
The Strategy (abbreviated as Stra) column indicates whether the learning method utilizes textual
strategies in its pipeline. The methods’ performance scores are reported in the standard RL evaluation
metrics of both mean return (MR) and success rate (SR) in percentage. For DYSTIL and GLAM we
report their performance scores for two different settings: the Behavioral-Cloning-only setting (BC)
and the Behavioral-Cloning-plus-PPO setting (BC+PPO). Rows showing the results of our DYSTIL
methods are highlighted in light pink. The highest score in each metric is highlighted in bold.

training frames across both the Behavioral Cloning stage and the PPO stage of the learning process.
This empirically demonstrates that DYSTIL also enjoys higher sample efficiency than GLAM.

Legend:

M
ax

 V
al

id
at

io
n

M
ea

n
R

et
ur

n
Se

en

Number of Frames for Training Number of Frames for Training Number of Frames for Training Number of Frames for Training

Minigrid Dynamic Obstacles BabyAI Unlock Pickup BabyAI Key Corridor BabyAI Put Next

Figure 4: Comparison of sample efficiency between DYSTIL and GLAM on the four RL environments.
The y-axis plots the maximum score of mean return evaluated on the validation set of environment
configurations that the agent has achieved so far during the learning process, and x-axis plots the
number of frames of training data that has been fed into the learning pipeline so far.

Model Interpretability In our experiments, DYSTIL also demonstrates superior model trans-
parency and interpretability during the reinforcement learning process. More specifically, DYSTIL
provides us with a direct textual channel to observe and interpret the evolution of the implicit strategies
underlying the agent’s policy during reinforcement learning, which can not be achieved by previous
RL methods. For example, in Appendix H, we illustrate a direct comparison between the initial list of
strategies and the best list of strategies (corresponding to the highest-performing model checkpoint)
acquired by the RL agent during DYSTIL training in the Dynamic Obstacles environment to show
the evolution of the agent’s strategies. From this comparison we can clearly see that during DYSTIL
the RL agent has been dynamically improving its list of strategies by revising inaccurate items and
adding new helpful strategies into the list based on its empirical interactions with the environment.

3.5 Ablation Study

In our ablation study, we remove the dynamic strategy update component from our DYSTIL proce-
dures, and run experiments in the four RL environments to see how that will affect the performance
of RL training. After the removal of the dynamic strategy update component, the RL agent will keep
using the initial list of strategies that it obtains from the Strategy-Generating LLM (before behavioral
cloning) for the whole PPO training process without updating it, and we call this ablated method
DYSTILBC+PPO-Static. The results of our ablation study are plotted in Figure 5. As we can see, on
average the success rate drops by 7.75% and the mean return drops by 0.062 (31% in ratio) after

8

removing the dynamic strategy update component from DYSTIL, which shows that the dynamic
strategy update component is indeed critical in achieving the best reinforcement learning performance
with DYSTIL.

Mean Return Ablation ResultsSuccess Rate Ablation Results

Figure 5: The results of our ablation study.

4 Related Work

LLMs for Reinforcement Learning and Language-Grounded RL Traditionally, most policy
models of deep RL algorithms have been directly operating over low-level raw features of environment
observations [3]. This design choice has inevitably restricted these RL methods’ abilities to explicitly
learn higher-level conceptual abstractions about the RL tasks. Recently more research efforts have
been made on grounding reinforcement learning into natural language [2, 1, 14, 26] and using pre-
trained LLMs [14] or VLMs [27] as the policy generator of RL agents. DYSTIL differs from these
existing methods by enabling LLM-based RL agents to efficiently learn higher-level strategies and
conceptual abstractions of the RL tasks through strategy induction from large-scale LLMs.

LLMs for Sequential Decision Making Recently there has been a series of works that explore
different approaches for applying LLMs to sequential decision making tasks [24, 25, 16, 28]. These
existing methods all rely on prompting to make inference of action decisions with frozen LLMs at
every single time step, and thus do not support parametrized policy learning during interaction with
the environment. In contrast, for DYSTIL the decision making inference at all time steps is run on
a Core Reasoning LLM that supports full model parameter tuning. As a result, DYSTIL has the
advantage being seamlessly compatible with on-policy reinforcement learning algorithms, while still
being able to learn high-level strategies through dynamic strategy distillation from large-scale LLMs.

5 Conclusion

In this paper we presented DYSTIL, a novel strategy-based reinforcement learning framework
integrated with large language models. We carried out empirical experiments over challenging RL
environments to evaluate DYSTIL on the task of reinforcement learning from expert demonstrations,
and the results show that DYSTIL significantly outperforms state-of-the-art baseline methods while
exhibiting higher sample efficiency and superior model interpretability.

Broader Impact Our work opens up new possibilities in leveraging powerful large language
models to generate textual strategies to help reinforcement learning algorithms improve their learning
performance, expedite their learning processes, and making their policy evolution more transparent.
In addition, in future works on LLM evaluation, it could also be of research interest to include new
evaluation metrics and benchmarks to quantitatively measure how much performance gain can the
textual strategies induced by different LLMs bring to reinforcement learning algorithms. This could
serve as an interesting new aspect to gauge the knowledge reasoning and induction abilities of LLMs
under cross-modal scenarios.

9

References
[1] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,

Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

[2] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Sa-
haria, Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language
learning with a human in the loop. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJeXCo0cYX.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[4] Jorge Ramírez, Wen Yu, and Adolfo Perrusquía. Model-free reinforcement learning from expert
demonstrations: a survey. Artif. Intell. Rev., 55(4):3213–3241, apr 2022. ISSN 0269-2821. doi:
10.1007/s10462-021-10085-1. URL https://doi.org/10.1007/s10462-021-10085-1.

[5] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky,
editor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1988.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[7] OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. URL https:
//openai.com/index/hello-gpt-4o/.

[8] Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and
Hanjun Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2024.

[9] Simon Jerome Han, Keith J. Ransom, Andrew Perfors, and Charles Kemp. Inductive rea-
soning in humans and large language models. Cognitive Systems Research, 83:101155,
2024. ISSN 1389-0417. doi: https://doi.org/10.1016/j.cogsys.2023.101155. URL https:
//www.sciencedirect.com/science/article/pii/S1389041723000839.

[10] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022.

[11] Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 3806–3824, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/
2023.findings-emnlp.248.

[12] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101(1):99–134,
1998. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00023-X. URL
https://www.sciencedirect.com/science/article/pii/S000437029800023X.

[13] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction (second
edition). The MIT Press, 2018.

[14] Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-
Yves Oudeyer. Grounding large language models in interactive environments with online
reinforcement learning. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

[15] Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng
Gao, et al. Multimodal foundation models: From specialists to general-purpose assistants.
Foundations and Trends® in Computer Graphics and Vision, 16(1-2):1–214, 2024.

10

https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.1007/s10462-021-10085-1
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://www.sciencedirect.com/science/article/pii/S1389041723000839
https://www.sciencedirect.com/science/article/pii/S1389041723000839
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://www.sciencedirect.com/science/article/pii/S000437029800023X

[16] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang.
Expel: Llm agents are experiential learners. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(17):19632–19642, Mar. 2024. doi: 10.1609/aaai.v38i17.29936. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29936.

[17] Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024. URL https://ai.meta.com/blog/meta-llama-3-1/.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[19] Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3:241–268, 1991.

[20] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/mniha16.html.

[21] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International conference on machine learning,
pages 151–160. PMLR, 2019.

[22] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999.

[23] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[24] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=WE_vluYUL-X.

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 8634–8652. Curran Associates, Inc., 2023.

[26] Rudra PK Poudel, Harit Pandya, Chao Zhang, and Roberto Cipolla. Langwm: Language
grounded world model. arXiv preprint arXiv:2311.17593, 2023.

[27] David Venuto, Mohammad Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang,
and Ankit Anand. Code as reward: Empowering reinforcement learning with VLMs. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
49368–49387. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
venuto24a.html.

[28] Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh R
N, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil L Mui, Huan Wang, Caiming
Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy
gradient optimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=KOZu91CzbK.

11

https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://proceedings.mlr.press/v48/mniha16.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://proceedings.mlr.press/v235/venuto24a.html
https://proceedings.mlr.press/v235/venuto24a.html
https://openreview.net/forum?id=KOZu91CzbK

A Example Model Input

Possible action of the agent: left turn, right turn, move forward.

Rules to follow:

1. Advance when clear and safe:
 - The agent should move forward when there is no immediate obstacle (e.g., no
ball directly in front or very close on either side) and when the green goal is within
a reasonable distance (1-3 steps away). This minimizes time steps without
unnecessary rotations.

10. Move forward when the goal is directly ahead, even if other obstacles are
nearby:
 - If the green goal is directly ahead and no obstacles block the forward path, the
agent should prioritize moving forward towards the goal, regardless of surrounding
obstacles, as the task can be completed in fewer steps.

Goal of the Agent: get to the green goal square.
Observation 1: you see a wall 1 step left, you see a blue ball 1 step forward, you see
a blue ball 2 steps right, you see a green goal 3 steps right and 2 steps forward, you
see a blue ball 3 steps right.
Action 1: right turn.
Observation 2: you see a wall 4 steps forward, you see a wall 3 steps left, you see a
wall 2 steps right, you see a green goal 2 steps left and 3 steps forward, you see a
blue ball 2 steps left and 1 step forward, you see a blue ball 1 step left and 3 steps
forward, you see a blue ball 1 step left and 2 steps forward.
Action 2: move forward.
Observation 3: you see a wall 3 steps left, you see a wall 2 steps right, you see a
green goal 2 steps left and 2 steps forward, you see a blue ball 2 steps forward, you
see a blue ball 1 step forward.
Action 3:

Model Input

…

Figure 6: An example textual input into our proposed Strategy-Integrated LLM Actor-Critic Model
for H = 2. This example input is constructed when the RL agent is traversing the Dynamic Obstacles
RL environment from the Minigrid library [1].

12

B Design Details of the Architecture of the RL Agent’s Actor Module in
DYSTIL

In coordination with the rise of research interests in language-grounded RL, recent works have also
been exploring the direction of using language models as the core policy generators of the agents in
reinforcement learning. For example, [14] proposes an architecture for a policy LLM that directly
takes a textual prompt comprised of an environment introduction, a task description, a historical
trajectory of observation descriptions and action names, and an action prompting phrase as input, and
then feed this prompt into an encoder-decoder language model to output the conditional probability
of each token in each action name given the prompt and the generated action tokens through its
language modeling head plus softmax. It then multiplies such conditional probabilities for all the
tokens in each action name together, and then normalize to obtain a probability distribution over the
set of all possible actions to serve as its policy [14]. This architecture suffers a lot from the issue
of slow inference, because for generating each single action decision we need to run this policy
LLM for NA ×MA times [14], where NA is the total number of possible actions and MA is the
average number of tokens in all the action names. In this work, in order to improve inference speed
and training efficiency, we design an upgraded architecture for the output side of the LLM policy
generator (i.e. the actor module of our DYSTIL agent). First, if necessary, we make some small
tweaks on the names of the actions such that no two actions would share the same first token in their
names (e.g. we could change the two action names ‘turn left’ and ‘turn right’ into ‘left turn’ and
‘right turn’ to avoid first-token conflict). Next, when generating an action decision we only need to
run the policy LLM once and then we can directly take the logits corresponding to the first token of
each action name outputed by the language modeling head, group them into a vector, and then run
softmax to obtain a probability distribtion over the set of all possible actions as our policy.

C Complexity Analysis of DYSTIL

In comparison to the no-strategy vanilla version of language-grounded behavioral cloning plus PPO
algorithm, DYSTIL introduces the following overhead to the computational complexity of the training
process: (1) as introduced in Section 2.3, DYSTIL adds a list of textual strategies to the textual
input of the core reasoning LLM, so the training and inference complexity over the core reasoning
LLM will increase accordingly as the number of input tokens increases; (2) before the behavioral
cloning stage, we need to make a one-time query to the strategy-generating LLM to induce the initial
list of strategies S0; (3) at the end of each PPO training epoch, we need to make a query to the
strategy-generating LLM Q to induce a new candidate list of strategies; (4) during each PPO training
epoch we perform an extra PPO-Optimization and two additional evaluation procedures to decide
whether we should accept or reject the newly induced candidate list of strategies. Therefore, as
long as the length of the LLM-induced list of strategies is not excessively long in comparison to the
original textual input (including the environment description, the goal, the pseudo-state description
and the action prompting prefix) to the core reasoning LLM (which is the case in most application
scenarios) and the query time over the strategy-generating LLM is not excessively long (which is
the case for many large-scale LLMs such as GPT-4o [7]), the additional computational overhead
introduced by DYSTIL will be acceptable. And we will see from the experiment results in Section
3, given this overhead DYSTIL will typically bring about higher sample efficiency and superior
performance.

13

D Examples of Observation-to-Text Transformation

Goal: get to the green goal square.

Textual Description of Agent Observation: you see a wall
4 steps forward, you see a wall 1 step left, you see a blue
ball 1 step right and 1 step forward, you see a blue ball 2
steps right and 2 steps forward, you see a blue ball 2
steps right, you see a green goal 3 steps right and 3 steps
forward.

MiniGrid-Dynamic-Obstacles-6x6-v0

BabyAI-PutNextS5N2-v0

obs2text

Textual Description of Agent Observation: you see a wall
5 steps forward, you see a wall 1 step left, you see a wall
3 steps right, you see a green ball 1 step right and 3
steps forward, you see a green key 2 steps right and 4
steps forward.

Goal: put the purple ball next to the green key.

obs2text

BabyAI-UnlockPickupDist-v0

Textual Description of Agent Observation: you see a wall
4 steps forward, you see a wall 2 steps left, you see a wall
3 steps right, you see a blue key 1 step left and 3 steps
forward, you see a blue box 1 step right and 2 steps
forward, you see a locked blue door 2 steps right and 4
steps forward.

Goal: pick up the purple box.

obs2text

BabyAI-KeyCorridorS3R2-v0

Textual Description of Agent Observation: you see a wall
3 steps forward, you see a closed grey door 1 step left
and 2 steps forward, you see a closed red door 1 step left,
you see a locked grey door 1 step right and 2 steps
forward, you see a closed yellow door 1 step right.

Goal: pick up the ball.

obs2text

Figure 7: Examples of Observation-to-Text Transformation in Minigrid and BabyAI environments
using the text description generator of BabyAI-text proposed in [14].

14

E Detailed Description of the RL Environments for Evaluation

Dynamic Obstacles Dynamic Obstacles is a challenging dynamic RL environment from the
Minigrid library [1]. In this environment, the agent’s goal is to navigate through a room with moving
obstacles to get to a green goal square without hitting any of them along the way [1]. If the agent
succeeds, it will be given a single reward of value r = 1− 0.9× (total_steps/max_steps) at the final
step; if it failed within maximum allowed number of steps, it will receive a reward of 0; if it hits an
obstacle along the way, it will receive a −1 penalty reward and the episode also terminates [1]. This
environment is one of the most challenging ones in Minigrid because it is a dynamic and stochastic
RL environment, and thus requires the agent to have strong abilities to reason about the high-level
mechanisms and principles of this environment in order to make good action decisions in a safely
manner. In our experiment we use the MiniGrid-Dynamic-Obstacles-6x6-v0 configuration.

Unlock Pickup Unlock Pickup is a challenging static RL environment from the BabyAI library
[2]. In each run of this environment, a target box is locked behind a door, and your goal as an agent is
to obtain the key to unlock that door and then pick up the box using as few time steps as possible.
And similar to the Dynamic Obstacles environment, the agent will receive either a single reward of
value r = 1 − 0.9 × (total_steps/max_steps) upon successful completion of the assigned task, or
0 reward if it failed within maximum allowed number of steps. Unlock Pickup is mainly difficult
for its high requirement on the agent’s abilities of maze exploration and navigation, avoidance of
obstructions, optimal path finding, and long-horizon task planning. In our experiment we use the
BabyAI-UnlockPickupDist-v0 configuration and set max_steps = 60.3

Key Corridor Key Corridor is another challenging static RL environment from the BabyAI library
[2]. In each run of this environment, the agent needs to explore a complex maze constituted of
multiple rooms to find a key and then use that key to open a locked door in order to pick up a
designated object locked behind that door, using as few time steps as possible. And again, the agent
will receive either a single reward of value r = 1− 0.9× (total_steps/max_steps) upon successful
completion of the assigned task, or 0 reward if it failed within maximum allowed number of steps. In
our experiment we use the BabyAI-KeyCorridorS3R2-v0 configuration and set max_steps = 60.

Put Next Put Next is another challenging static RL environment from the BabyAI library [2]. In
each run of this environment, the agent will be assigned a randomly generated task in the form of
moving a designated object to a position next to another designated object using as few time steps as
possible. And similar to the Dynamic Obstacles environment, the agent will receive either a single
reward of value r = 1− 0.9× (total_steps/max_steps) upon successful completion of the assigned
task, or 0 reward if it failed within maximum allowed number of steps. Put Next is mainly difficult
for its high requirement on the agent’s abilities of maze exploration and navigation, avoidance of
obstructions, optimal path finding, and long-horizon task planning. In our experiment we use the
BabyAI-PutNextS5N2-v0 configuration and set max_steps = 60.

3The max_steps is a hyperparameter of these RL environments that can be freely set to flexibly adjust their
difficulty levels. In order to increase the differentiation of different methods’ learning performance in our
experiments, we set max_steps = 60 for Unlock Pickup, Key Corridor and Key Corridor.

15

F Training Hyperparameter Settings

Table 2: Training Hyperparameter Settings

Hyperparameter Value
Behavioral Cloning Hyperparameters

Batch size 16
Learning rate 1× 10−4

PPO Hyperparameters

Batch size 32
Learning rate 1× 10−5

Number of processes 4
Number of frames per processes between updates 128
GAE λ 0.95
Entropy coefficient 0.01
Value coefficient 0.5

DYSTIL Hyperparameters

Hidden size of the critic network 1024
Number of (s, a) pairs for new strategy induction 10

16

G Prompt Template Pdynamic

Pdynamic

Imagine now you are a reinforcement learning agent in a 2D gridworld RL platform called
MiniGrid, and you are learning to complete tasks in a specific RL environment called
‘Dynamic Obstacles’ on this Minigrid platform. This ‘Dynamic Obstacles’ environment is an
empty room with moving obstacles. In each run of this ‘Dynamic Obstacles’ task in this RL
environment, your goal as an agent is to reach the green goal square using as few time steps
as possible without colliding with any obstacle. If the agent collides with an obstacle, a large
penalty is subtracted and the episode is terminated. Your possible actions as an agent at each
time step are: ‘left turn’, ‘right turn’, and ‘move forward’.

You are provided with 5 successful trajectories of expert demonstrations of the oracle courses
of actions to complete tasks in this ‘Dynamic Obstacles’ environment for your reference,
which are listed in detail below:

. . .

Currently, as the reinforcement learning agent, you are following the following list of strate-
gies when making action decisions in this ‘Dynamic Obstacles’ environment:

. . .

And in your current iteration of experience collection during a PPO training process, the
following 10 state-action pairs (they may come from different episodes) received the lowest
advantage values, which indicates that these action decisions might not be optimal:

. . .

Now upon analyzing the above 10 state-action pairs with low advantage values, and based
on your analysis and understanding of the 5 expert demonstrations of oracle trajectories
provided to you earlier, please modify and update the list of strategies that you are currently
following if you are confident that it is appropriate to do so. You can correct existing strategy
items if you think they are inaccurate, you can add new strategy items if you think they are
currently missing, and you can delete existing strategy items if you think they are wrong.
Please remember that the above advantage values are estimated by the value network of the
RL agent model during PPO training, and thus may not be entirely accurate and should be
analyzed with caution. Therefore, you should consider the evidence suggested by the above
observation-action pairs with low advantage values, the patterns and insights exhibited by
the expert demonstration trajectories, and your own understanding, reasoning and judgement
about this ‘Dynamic Obstacles’ task all together to make wise decisions when modifying and
updating the list of strategies. Please only return the updated list of strategies without any
other text before or after the list.

17

H Example of Strategy Evolution during DYSTIL Training

Initial List of Strategies Best List of Strategies

1. Advance when clear and safe:
- The agent should move forward when there is no

immediate obstacle (e.g., no ball directly in front or
very close on either side) and when the green goal is
within a reasonable distance (1-3 steps away). This
minimizes time steps without unnecessary rotations.

2. Turn towards the goal when necessary:
- The agent should make a left or right turn to

align with the direction of the green goal when mov-
ing forward directly is blocked by obstacles or walls.
Turning should be based on the goal’s relative posi-
tion to the agent.

3. Avoid obstacles by turning instead of moving
forward:

- The agent should prioritize turning when it de-
tects obstacles (e.g., blue balls) directly in front.
Moving forward into an obstacle should always be
avoided as it ends the episode with a penalty.

4. Maintain goal orientation after turning:
- After turning, the agent should quickly readjust

and move towards the green goal if the path is clear,
ensuring minimal time is spent making unnecessary
turns.

5. Turn early when a wall is close:
- The agent should turn left or right early if a wall

is detected within 1-2 steps ahead. Moving forward
into a wall wastes a time step, and adjusting earlier
is more efficient.

6. Favor forward movement when obstacles
are distant:

- When obstacles are visible but farther than 1
-2 step s away, the agent should continue moving
forward as long as the path is clear . Turning
preemptively when obstacles are distant can delay
the agent unnecessarily .

7. Turn towards the side of the goal if obstacles
are scattered ahead:
- If multiple obstacles (blue balls) are scattered ahead
and there’s no clear direct path to the green goal, the
agent should turn towards the side where the green
goal is closer and avoid the cluster of obstacles.

8. Optimize by following the closest safe route
to the goal:
- When the green goal is identified within 2-3 steps
but obstacles obstruct direct movement, the agent
should prioritize a minimal deviation (either left or
right turn) to navigate around the obstacles and then
move towards the goal.

1. Advance when clear and safe:
- The agent should move forward when there is no

immediate obstacle (e.g., no ball directly in front or
very close on either side) and when the green goal is
within a reasonable distance (1-3 steps away). This
minimizes time steps without unnecessary rotations.

2. Turn towards the goal when necessary:
- The agent should make a left or right turn to

align with the direction of the green goal when mov-
ing forward directly is blocked by obstacles or walls.
Turning should be based on the goal’s relative posi-
tion to the agent.

3. Avoid obstacles by turning instead of moving
forward:

- The agent should prioritize turning when it de-
tects obstacles (e.g., blue balls) directly in front.
Moving forward into an obstacle should always be
avoided as it ends the episode with a penalty.

4. Maintain goal orientation after turning:
- After turning, the agent should quickly readjust

and move towards the green goal if the path is clear,
ensuring minimal time is spent making unnecessary
turns.

5. Turn early when a wall is close:
- The agent should turn left or right early if a wall

is detected within 1-2 steps ahead. Moving forward
into a wall wastes a time step, and adjusting earlier
is more efficient.

6. Favor forward movement while alert to nearby
obstacles:

- When obstacles are visible but not immediately
in front (more than 1 step away) , the agent should
favor moving forward with heightened alertness,
evaluating if the path remains clear or if a turn is
needed to avoid upcoming obstacles.

7. Plan moves with goal proximity in mind:
- When the green goal is identified within 2-3 steps
but obstacles obstruct direct movement, the agent
should consider minimal deviations (left or right
turns) to navigate around obstacles, ensuring quick
progression towards the goal.

Continued on next page

18

Initial List of Strategies (continued) Best List of Strategies (continued)

9. Minimize unnecessary rotations:
- The agent should avoid making consecutive left-

right turns in short succession unless absolutely nec-
essary for obstacle avoidance. The strategy should
be to realign with the goal and proceed forward as
much as possible.

10. Move forward when the goal is directly ahead,
even if other obstacles are nearby:

- If the green goal is directly ahead and no obsta-
cles block the forward path, the agent should priori-
tize moving forward towards the goal, regardless of
surrounding obstacles, as the task can be completed
in fewer steps.

8. Minimize unnecessary rotations:
- The agent should avoid making consecutive left-

right turns in short succession unless absolutely nec-
essary for obstacle avoidance. The strategy should
be to realign with the goal and proceed forward as
much as possible.

9. Move forward when the goal is directly ahead,
even if other obstacles are nearby:

- If the green goal is directly ahead and no im-
mediate obstacles block the forward path, the agent
should prioritize moving forward towards the goal,
as this can be achieved in fewer steps.

10. Blend observations with historical context:
- The agent should sometimes reconsider its imme-
diate action decision based on recent observations
and actions to prevent repeated unoptimized move-
ments (e.g., moving forward into known problematic
areas).

11. Execute small direction adjustments when
multiple obstacles:
- If there are multiple scattered obstacles (blue balls)
ahead, the agent should make small directional ad-
justments (left or right turns) to better navigate
through or around them while maintaining a path
towards the goal.

12. Avoid repetitive turning patterns in short
sequence:
- The agent should avoid alternating between left
and right turns in quick succession, as this indicates
a lack of efficient navigation and situational aware-
ness, leading to suboptimal trajectories.

13. Focus on incremental progress towards the
goal:
- The agent should break down the path to the goal
into a series of small, manageable movements, con-
stantly recalibrating based on the updated observa-
tion to ensure consistent progress without unneces-
sary detours.

14. Efficiently navigate around immediate ob-
stacles:
- When an obstacle is detected immediately ahead (1
step), the agent should prioritize making a small di-
rectional adjustment to avoid a direct collision, while
promptly reorienting towards the goal thereafter.

19

	Introduction
	DYSTIL: Dynamic Strategy Induction with LLMs for Reinforcement Learning
	Preliminaries
	Strategy Induction with LLMs from Expert Demonstrations
	A New Strategy-Based Model Architecture for DYSTIL RL Agents
	Dynamic Strategy Induction with LLMs based on Proximal Policy Optimization

	Experiments
	Observation-to-Text Transformation
	Baseline Methods
	Experiment Setup
	Experiment Results and Analysis
	Ablation Study

	Related Work
	Conclusion
	Example Model Input
	Design Details of the Architecture of the RL Agent's Actor Module in DYSTIL
	Complexity Analysis of DYSTIL
	Examples of Observation-to-Text Transformation
	Detailed Description of the RL Environments for Evaluation
	Training Hyperparameter Settings
	Prompt Template Pdynamic
	Example of Strategy Evolution during DYSTIL Training

